

SELTECH – CONFIDENTIAL

Micro-Acoustic & Human Interface Products

Common Speaker Application Design Guidelines

Common Application Design Guidelines

- Back volume
 - ... why a closed back volume?
 - In how to connect to the speaker?
 - ... mechanical robustness
 - ... acoustical influence
- Sound Port
 - ... opening size vs. Bandwidth
 - ... damping/acoustic load
 - turbulence/noise

... Why a closed back volume?

- In to have a well defined acoustical environment behind the speaker Well defined acoustical performance
- In to be able to adjust the resonance frequency of the system
- In to avoid acoustical short circuit Speaker for closed box design needed

Resonance frequency range is the most efficient range of the speaker

... How to connect to the speaker?

- Using PCB as box-cover
- Directly contacting to PCB
- Create closed box
- Contacting with flex-print
- Create closed box
- Contacting with contact pin

... How to connect to the speaker?

- Create closed box
- Contacting with contact spring

- Reverse application
- Directly contacting to PCB

Sound port at rear side of the speaker

... Mechanical robustness

- Min. wall thickness to avoid wall resonating (depends on material) Avoid « wall-to-wall-design » (e.g. antenna module)
- Vibrations can cause rattling noise
- Use << sandwich >> for applying the speaker (foam-gasket, speaker, hard support at rear side)
- No heat-radiating components inside the back volume
- Etc.

Back venting of RA11x15

- It is possible to put the RA completely down on a PCB or module housing
- Venting to the back is provided by 4 venting holes and slits
- All 4 holes should lead to a common, closed back volume

Acoustic load at the rear side of speaker

	100
	90
	80
and the second	70
	60
v_1	750
	600
	450
venting holes	300
and slits	150
	0
Speaker surounded on three sides by walls will influence resonance frequency and sensitivity.	19 17 15
Additional acoustic load will reduce performance compared to a free scenario	13 11 9 7 5

frequency response dBSPL; free field 10cm @100mW

Acoustical influence

- Channels connecting parts of the back volume can cause peaks in frequency response
- Shape of volume: high aspect ratio
 volume spaces do not constitute
 effective volume

Acoustical influence

Leaks can cause damage to the speaker by exceeding maximum membrane excursion

variable slit dimension x

Opening size vs. Bandwidth

Sound Port

Acoustic load by side venting sound port

Tube dimensions have a dramatic influence on the acoustic performance.

Tube length: avoid sharp edges or corners that could result in audible turbulence.

Sound Port

Turbulence/noise

Possible reasons:

- Sound port openings too small
- Front volume too small
- Sharp edges in sound port
- Damping mesh on sound port too tight

SELTECH Innovation & Technology

THANKS !